Validation Report for Quantitation and/or Qualitative Identification of Benzodiazepines, Opioids, and Select Hypnotics in Whole Blood by LC-MSMS

This document describes the validation of benzodiazepines, opioids, and select hypnotics for quantitation and/or qualitative identification by liquid chromatography with tandem mass spectrometry (LC-MSMS). Protein precipitation with acetonitrile was used to prepare the whole blood specimens for analysis. A Shimadzu Prominence liquid chromatograph with an AB Sciex 3200 QTrap tandem mass spectrometer, designated as LC-1, was used for quantitation and confirmation using multiple reaction monitoring mode (MRM). Dihydrocodeine and flunitrazepam were validated for qualitative identification only. Buprenorphine, norbuprenorphine, and ramelteon were not able to be validated for qualitative or quantitative identification by this method. This validation included the evaluation of:

Validation Parameter	Acceptance Criteria (1-5)	Validation Results
Selectivity/Specificity	 No matrix interference from at least 10 different whole blood sources that do not contain the target analyte(s). No interference from at least 10-15 similar compounds that are commonly identified in whole blood case samples. 	target analytes. 2. There was no interference from 53 similar compounds that are
	3. No interference from a high concentration of target compound(s) for the internal standard(s).	3. There was no significant
Ionization Suppression/Enhancement	 Isotopically-labeled (deuterium) internal standards that co-elute (within ± 0.05 minutes) with each target analyte will be used for all but one compound. Therefore, ionization suppression/enhancement experiments are not required or necessary except for that one compound. However, SWGTOX (5) lists this experiment as a requirement and it will therefore be conducted. Average suppression or enhancement must be less than ± 25% and the %CV of the suppression or enhancement must be less than 15%. If either of these values are exceeded then it must be demonstrated that the 	 average suppression or enhancement greater than ± 25% for either the analyte, internal standard or both. None of the compounds demonstrated average suppression or enhancement greater than ± 11% for the relative response indicating that the use of isotopically-labeled internal standards compensated for any significant ion suppression or enhancement. 2. The % CV for the relative response was not greater than 10% for any compound.

	suppression/enhancement does not		
	impact LOD, LOQ, and bias.		
Calibration model/linearity	 At least 6 non-zero concentrations evenly spaced across the calibration range (perhaps more for non-linear models), with five replicates at each level analyzed in 5 separate extractions (one replicate per level per extraction), with the combined data used to establish the calibration model. Coefficient of determination must be ≥ 0.990. Visual inspection of the curve and residual plot should indicate normal random scatter around the calibration curve. Calibrators must be within ± 20% 	2.	At least six non-zero concentrations over 5 separate extractions were used to establish the calibration model. The coefficient of determination (r^2) was ≥ 0.990 for all compounds except chlordiazepoxide. A more appropriate minimum coefficient of determination for chlordiazepoxide will be specified in the method as ≥ 0.980 . Visual inspection of the curves and residual plots indicated normal random scatter around the calibration curve. All calibrators were within $\pm 20\%$ of the intermediate of the second seco
Sensitivity – Limit of Detection (LOD)	 of their prepared concentration. 1. Good chromatographic peak shape. 2. Signal-to-noise ratio of greater than 3:1. 3. MRM ion ratios within 20% and retention time within 0.1 minutes (or 2% relative retention time) compared to a suitable standard (or average of all calibrators). 4. Once determined, the LOD must be verified by at least two replicates of a standard run in three separate extractions prepared in three different sources of blood. 	3.	by at least two replicates of a standard run in five separate extractions prepared in whole blood containing a mixture of four different sources.
Sensitivity – Limit of Quantitation (LOQ)	 Good chromatographic peak shape. Signal to Noise ratio of greater than 10:1. MRM Ion ratios within 20% and retention time within 0.1 minutes (or 2% relative retention time) compared to a suitable standard (or average of all calibrators). Quantitative results must be within ± 20% of their prepared concentration. Once determined, the LOQ must be 	1. 2. 3.	All compounds had good chromatographic peak shape at the LOQ. All signal to noise ratios were greater than 31:1 for those compounds validated for quantitative analysis. MRM ion ratios were within ± 20% and retention times were within 0.1 minutes compared to the average of all calibrators used (specific to each compound).

	verified by at least two replicates of 4. All quantitative results were
	 a standard run in three separate extractions prepared in three different sources of blood. 5. The LOQ was verified by two replicates of a standard run in five separate extractions prepared in a mixture of whole blood containing four different sources.
Repeatability — Bias (Accuracy)	 Evaluated at three concentration levels. A low level within three times the LOQ, a high level within 20% of the upper limit of the calibration range, and a medium level near the midpoint of the low and high. Pooled fortified matrix samples may not be used as some target analytes may demonstrate poor stability in matrix. At least 3 replicates from 5 separate extractions should be evaluated for each level. The bias should be within ± 20% of the prepared concentration.
Repeatability—Precision Within-run Between-run	 Evaluated at least at three concentration levels. The same that were used for the bias studies. At least 3 replicates from 5 separate extractions should be evaluated for each level. The coefficient of variation (CV) should be within 20%.
Reportable Range	 The reportable range shall be determined after evaluating the calibration model and sensitivity of the assay. It is advantageous, but may not be necessary for the reportable range to include the range of desired concentrations noted below.
Dilution Integrity	 Any required dilutions of case samples will be made with whole blood. Dilution integrity will be evaluated at a 1:10 dilution by repeating bias and precision studies at one level using a 1:10 dilution of standards prepared in whole blood. Other dilutions may also be Dilution integrity was evaluated for a 1:10 dilution of a 200/2000 ng/mL control prepared in whole blood. All stated bias and precision criteria were acceptable using the dilution.

	evaluated if it is anticipated that they will be routinely used in casework.2. All bias and precision criteria stated above must be acceptable when using the dilution.
Carryover	 A blank matrix sample must be analyte free when run after a standard prepared at or above the highest calibrator concentration. Lack of carryover must be determined by triplicate analyses (repeated injection of an extracted standard and blank is acceptable). The blank matrix sample was analyte free when run after a standard prepared at 100/1000 ng/mL. The lack of carryover was determined by triplicate analyses on five different days.
Extract Stability	 Five replicates of controls will be prepared at a low and high concentration. The extracts will be combined and then divided into five different vials. A vial of each level will be injected in triplicate on day 0. The other vials will be stored on the instrument and re-injected on each subsequent day in triplicate. The response of each analyte must be within ± 20% of the response from day 0. If the response falls outside this range then the extract stability of the analyte has been exceeded. Five replicates of controls will be combined and then divided into five different vials. A vial of each level will be injected in triplicate on day 0. The other vials will be stored on the instrument and re-injected on each subsequent day in triplicate. The response of each analyte must be within ± 20% of the response from day 0. If the response falls outside this range then the extract stability of the analyte has been exceeded.
Ruggedness/Robustness	1. Validation studies will be performed over multiple days by multiple analysts. 1. Studies were performed by 5 different analysts over multiple days and demonstrated repeatable results.
Case Sample Comparison	 Any case samples that have been previously determined to contain the target analyte(s) must have identical qualitative results and quantitative results must agree within ± 20% (within the capabilities of the methods being compared). Note: Some analytes may have poor stability in matrix and this should be considered if there are discrepancies in the qualitative and/or quantitative results. Overall good agreement for case samples that had been previously determined to contain the target analytes was observed Qualitative results were consistent within the capabilities of each method. Quantitative results for most target analytes were within ± 20%. Some discrepancies were noted and are discussed below.

Estimation of Uncertainty	1. The uncertainty of measurement	1. The uncertainty of measurement
of Measurement	estimation worksheet will be	was estimated using a minimum
	constructed using TX Estimation of	of 30 replicates of the 20/200
	Uncertainty of Measurement	ng/mL control that will be used for
	(UOM) for the replicate data of a	routine casework using TX
	suitable control that will be used in	Estimation of Uncertainty of
	routine casework. Note: This	Measurement (UOM).
	requires a minimum of 30	
	replicates.	

Validation Steps

Step 1: **Ionization Suppression/Enhancement** 12/30/13 Analyst: Nick Tiscione (NBT)

General Outline of Validation Step

- 1. Prepare working calibrator(s) and control(s) in acetonitrile or other suitable solvent.
- 2. Prepare working internal standard in acetonitrile or other suitable solvent.
- 3. Two different sets of samples will be prepared and the analyte and internal standard peak areas of neat standards will be compared to matrix samples fortified with neat standards after extraction or processing.
- 4. Set one will consist of neat standards prepared at two concentrations—one low and one high with one replicate at each level. Each of these neat standards will be injected six times to establish a mean peak area for each concentration.
- 5. Set two will consist of a minimum of ten different matrix sources (if possible). Each matrix source will be extracted in duplicate. After the extraction is complete, each matrix sample will then be fortified with either the low or high concentration neat standard.
- The average area of each set (\bar{X}) is used to estimate the suppression/enhancement effect at each 6. concentration as follows:

 $(\overline{X} Area of Set 2)$ 0

Sensitivity,	Carryover,	Linearity, and	Selectivity/Spe	cificity

1/3/14 NBT Analyst:

Step 2:

General Outline of Validation Step

1. Extract the following:

- a. A series of at least eight calibrators prepared in whole blood representing anticipated concentrations in whole blood specimens, evenly spaced. Two different desired calibration ranges will be evaluated, a low and a high.
- b. The low concentration range will include the following compounds:
 - 1.6-MAM
 - 2.7-Aminoflunitrazepam
 - 3. Buprenorphine
 - 4. Flunitrazepam

Nick Tiscione 4/7/14 Page 5 of 59

- 5. Fentanyl
- 6. Hydromorphone
- 7. Norbuprenorphine
- 8. Oxymorphone
- 9. Ramelteon

c. The high concentration range will include the following compounds:

- 1. Alprazolam
- 2. Chlordiazepoxide
- 3. Clonazepam
- 4. Codeine
- 5. Desalkylflurazepam
- 6. Diazepam
- 7. Dihydrocodeine
- 8. Hydrocodone
- 9. Lorazepam
- 10. Methadone
- 11. Midazolam
- 12. Morphine
- 13.Nordiazepam
- 14.Oxazepam
- 15.Oxycodone 16.Temazepam
- 17. Zaleplon
- 18. Zolpidem
- 19. Zopiclone

Concentration range	Desired Range	Suggested Calibrator Levels		
	(ng/mL)	(ng/mL)		
Low	1-50	0.1, 0.5, 1, 3, 5, 10, 20, 30, 40, 50, 100		
High	10-500	1, 5, 10, 30, 50, 100, 200, 300, 400, 500, 1000		

- d. A matrix blank with internal standard to be run after the highest calibrator (analyzed in triplicate).
- e. A matrix blank fortified with the target analytes at the same concentration as the highest calibrator without internal standard.
- f. A matrix blank fortified with as many of the following compounds as are available, each at 10 ug/mL. Do not add internal standard. Note: Add appropriate amount of each compound to labeled tube, evaporate solvent and add whole blood.
 - 1. Acetaminophen
 - 2. Amitriptyline
 - 3. Amphetamine
 - 4. Benzoylecgonine
 - 5. Bupropion
 - 6. Butalbital
 - 7. Butylone
 - 8. BZP
 - 9. Carbamazepine
 - 10. Carisoprodol
 - 11. Chlorophenylpiperazine
 - 12. Chlorpheniramine
 - 13. Citalopram
 - 14. Cocaethylene
 - 15. Cocaine
 - 16. Cyclobenzaprine

Nick Tiscione 4/7/14 Page 6 of 59

- 17. Dextromethorphan
- 18. Delta-9 THC
- 19. Delta-9-Carboxy THC
- 20. Dicyclomine
- 21. Diphenhydramine
- 22. Doxepin
- 23. Doxylamine
- 24. Fluoxetine
- 25. 5-MeO-Dipt (Foxy)
- 26. Hydroxyzine
- 27. Lamotrigine
- 28. Lidocaine
- 29. Meperidine
- 30. Meprobamate
- 31. Metaxalone
- 32. Methamphetamine
- 33. Methylone
- 34. Metoclopramide
- 35. Mirtazepine
- 36. MDA
- 37. MDMA
- 38. Naloxone
- 39. Naltrexone
- 40. Norfluoxetine
- 41. Norpropoxyphene
- 42. Norquetiapine
- 43. Nortriptyline
- 44. Olanzapine
- 45. Orphenadrine
- 46. Pheniramine47. Phenobarbital
- 4/. Phenobarbital
- 48. Phentermine49. Phenytoin
- 50 D 41
- 50. Promethazine
- 51. Propoxyphene 52. Pseudoephedrine
- 53. Sertraline
- 54. Topiramate
- 55. TFMPP
- 56. Tramadol
- 57. Trazodone
- 58. Venlafaxine
- 59. Quetiapine
- g. Ten whole blood blanks from different sources that do not contain the target analytes or internal standard. Note: A blood blank that consists of a mixture of different sources may substitute for some of the ten (i.e. a mixture of six sources will count as six of the required ten).
- 2. Analyze on LC-1.
- 3. Repeat 1.a. through 1.d. four times in four separate extractions to yield 5 replicates at each calibrator level.
- 4. Use the combined data to evaluate the calibration model.
- 5. Evaluate the calibrators to determine the limit of detection (LOD) and limit of quantitation (LOQ).
- 6. Determine suitable levels for the calibrators to be used in routine analysis (at least 4 for linear models or at least 6 for non-linear models).

- 7. Determine suitable level(s) for the positive control(s) to be used in routine analysis.
- 8. Evaluate carryover and specificity.

Steps 3-7:	Sensitivity, Repeatability, Robustness, Estimation of Uncertainty of Measurement
12/31/13 – 1/29/14	NBT, Tate Yeatman (DTY), Amber Kohl (AK), Xiaoqin Shan (XS),
Analysts:	Ilene Alford (IKA)

General Outline of Validation Steps

- 1. Prepare the calibrators, matrix blank, and replicates for each of the positive control(s).
 - a. Positive controls
 - i. Two replicates at the LOD prepared in at least three different sources or a mixture of at least three different sources of whole blood.
 - ii. Two replicates at the LOQ (if different than LOD) prepared in at least three different sources or a mixture of at least three different sources of whole blood.
 - iii. Three replicates at a low level within three times the LOQ.
 - iv.
 - v. Three replicates at a high level within 20% of the upper limit of the calibration range.
 - vi. Three replicates at a medium/mid level near the midpoint of the low and high.
 - vii. Three replicates of a standard prepared at ten times the concentration of the mid level, then diluted 1:10 with blank whole blood.
- 2. Analyze on LC-1, running the matrix blank after the highest calibrator.
- 3. Evaluate the positive controls for precision and accuracy (bias).
- 4. A suitable control level that will be analyzed for routine analysis will be used to establish an initial estimation of the UOM for the compound(s) being validated for quantitative analysis. See Step 9.

Step 8: Case Sample Comparison/Evaluation

Analysts: NBT, IKA, DTY, AK, XS

General Outline of Validation Step

- 1. Prepare the calibrators, matrix blank and positive control(s).
- 2. Prepare at least 5-10 negative and positive cases (as many as available).
- 3. Perform procedure and run on LC-1.

Step 9:	Estimation of Uncertainty of Measurement
2/12/14	
Analyst:	NBT

General Outline of Validation Step

- 1. Prepare the calibrators and matrix blank.
- 2. Prepare enough replicates of the positive control to be used for the UOM estimation (identified in Steps 3-7) to yield a total of 30 when combined with replicates from Steps 3-8.
- 3. Perform procedure and run on LC-1.
- 4. Use TX Estimation of Uncertainty of Measurement (UOM) to establish an initial estimation of the UOM for the compound(s) being validated for quantitative analysis.

Step 10:	Extract Stability
1/13/14	
Analyst:	NBT

General Outline of Validation Step

- 1. Prepare five replicates of controls at a low, mid and high concentration (same as used above in Steps 3-7) with internal standard.
- 2. Combine the extracts of the replicates at each level and then divide into five different vials.
- 3. Inject a vial of each level in triplicate on day 0.
- 4. Store the other vials on the instrument and reinject on each subsequent day in triplicate.
- 5. The response of each analyte must be within $\pm 20\%$ of the response from day 0. If the response falls outside this range then the extract stability of the analyte has been exceeded.

Results

Selectivity / Specificity

Several different blood samples were prepared and extracted to evaluate the selectivity of the method through an interference study. The specific samples are outlined below.

- A matrix blank fortified with the target analytes at the same concentration as the highest calibrator (100 or 1000 ng/mL depending on the analyte) without internal standard.
- A matrix blank fortified with 53 related compounds that have been identified in blood drug analysis casework. Each compound was fortified at a concentration of $10 \mu g/mL$.
- Ten whole blood samples from different sources that did not contain the target analytes or internal standard.

There was no matrix interference from 10 different whole blood sources that did not contain the target analytes. There was no interference from 53 related compounds that are commonly identified in whole blood case samples. There was no significant interference from a high concentration of target compounds for the internal standards, although some interference was observed for codeine-d₃ from codeine fortified at 1000 ng/mL. The response observed was approximately 16% of the normal codeine-d₃ response and did not affect the accurate quantitative measurement of controls prepared at 5 levels across the calibration range of 10 to 500 ng/mL.

Conclusion

The method is specific for the target analytes and internal standards studied.

Ionization Suppression/Enhancement

Working standards for the calibrators, controls, and internal standard were prepared in acetonitrile. Two different sets of samples were prepared and the analyte and internal standard peak areas of neat standards were compared to matrix samples fortified with neat standards after extraction or processing. Set one consisted of neat standards prepared at two concentrations 5/50 ng/mL and 40/400 ng/mL with one replicate at each level. Each of the neat standards was injected six times to establish a mean peak area for each concentration. Set two consisted of ten different matrix sources that were extracted in duplicate. After the extraction was complete each matrix sample was fortified with the low or high concentration neat standard. The average area of each set was used to estimate the suppression/enhancement effect at each concentration as follows for the analyte, internal standard, and relative response for each drug:

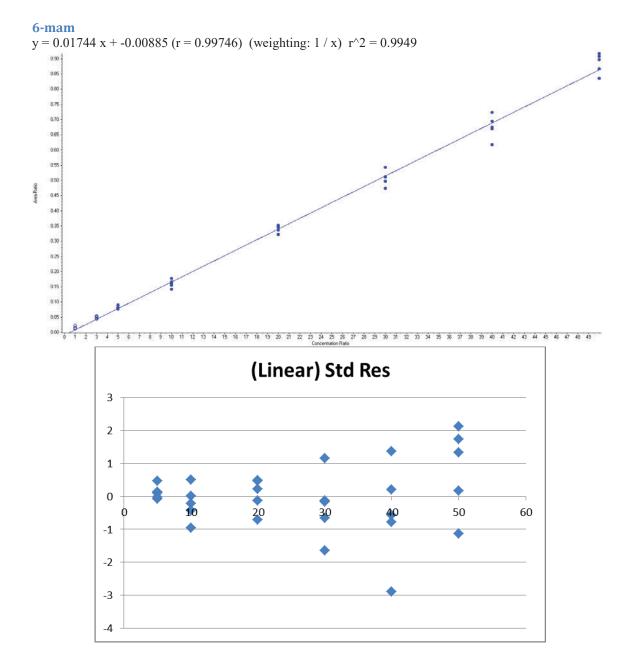
Nick Tiscione 4/7/14 Page 9 of 59

Ionization suppression or enhancement (%) =
$$\left(\frac{\bar{X} \text{ Area of Set 2}}{\bar{X} \text{ Area of Set 1}} - 1\right) x 100$$

The % CV was also calculated for the analyte, internal standard, and relative response for each drug at each concentration.

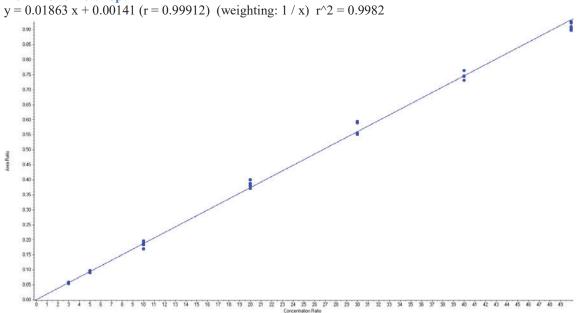
	ISTD	Levels Evaluated (ng/mL)	Ionization Suppression or Enhancement (%)					
Analyte			5/50 ng/mL			40/400 ng/mL		
			Analyte Response	ISTD Response	Relative Response	Analyte Response	ISTD Response	Relative Response
6-mam 1	IS 6-mam d3	5, 40	27%	22%	3%	6%	3%	3%
7-aminoflunitrazepam 1	IS 7-aminoflunitrazepam d7	5, 40	25%	12%	11%	7%	-1%	8%
alprazolam 1	IS alprazolam d5	50, 400	50%	41%	6%	10%	11%	-1%
buprenorphine 1	IS buprenorphine d4	5, 40	47%	41%	5%	3%	15%	-10%
chlordiazepoxide 1	IS chlordiazepoxide d5	50, 400	8%	5%	3%	-6%	-6%	0%
clonazepam 1	IS clonazepam d4	50, 400	8%	8%	0%	-1%	-5%	4%
codeine 1	IS codiene d3	50, 400	14%	14%	0%	0%	1%	-1%
desalkylflurazepam 1	IS desalkyflurazepam d4	50, 400	10%	7%	3%	-3%	-1%	-3%
diazepam 1	IS diazepam d5	50, 400	9%	10%	-1%	-7%	-6%	-1%
dihydrocodeine 1	IS dihydrocodeine d6	50, 400	16%	12%	4%	-1%	-2%	0%
fentanyl 1	IS fentanyl d5	5, 40	16%	16%	0%	-2%	-1%	-1%
flunitrazepam 1	IS flunitrazepam d7	5, 40	10%	10%	1%	-7%	-7%	0%
hydrocodone 1	IS hydrocodone d3	50, 400	3%	6%	-2%	-7%	-10%	3%
hydromorphone 1	IS hydromorphone d3	5, 40	-1%	-2%	1%	-10%	-10%	0%
lorazepam 1	IS lorazepam d4	50, 400	14%	3%	11%	-11%	-8%	-2%
methadone 1	IS methadone d3	50, 400	12%	8%	3%	-22%	-22%	1%
midazolam 1	IS midazolam d4	50, 400	21%	25%	-3%	3%	6%	-3%
morphine 1	IS morphine d3	50, 400	10%	6%	3%	-5%	-6%	1%
norbuprenorphine 1	IS norbuprenorphine d3	5, 40	18%	22%	-4%	1%	3%	-3%
nordiazepam 1	IS nordiazepam d5	50, 400	10%	15%	-4%	-5%	-4%	-1%
oxazepam 1	IS oxazepam d5	50, 400	-5%	-8%	4%	-11%	-13%	3%
oxycodone 1	IS oxycodone d3	50, 400	11%	14%	-2%	-5%	-3%	-2%
oxymorphone 1	IS oxymorphone d3	5, 40	2%	1%	1%	-9%	-5%	-4%
ramelteon 1	IS alprazolam d5	5, 40	46%	41%	5%	5%	11%	-5%
temazepam 1	IS temazepam d5	50, 400	16%	23%	-6%	-6%	3%	-8%
zaleplon 1	IS zaleplon d4	50, 400	29%	30%	-3%	-2%	-2%	0%
zolpidem 1	IS zolpidem d6	50, 400	8%	8%	0%	-2%	-2%	-1%
zopiclone 1	IS zopiclone d4	50, 400	16%	14%	1%	0%	-4%	4%

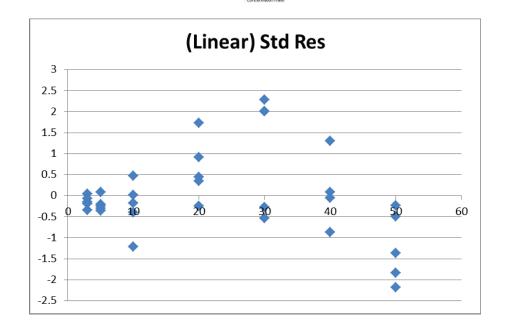
			% CV					
	ISTD	Levels Evaluated (ng/mL)	5/50 ng/mL			40/400 ng/mL		
Analyte			Analyte Response	ISTD Response	Relative Response	Analyte Response	ISTD Response	Relative Response
6-mam 1	IS 6-mam d3	5, 40	7%	3%	9%	5%	4%	4%
7-aminoflunitrazepam 1	IS 7-aminoflunitrazepam d7	5, 40	9%	11%	6%	6%	8%	3%
alprazolam 1	IS alprazolam d5	50, 400	8%	7%	5%	10%	7%	4%
buprenorphine 1	IS buprenorphine d4	5, 40	8%	4%	8%	6%	2%	6%
chlordiazepoxide 1	IS chlordiazepoxide d5	50, 400	5%	4%	3%	2%	3%	3%
clonazepam 1	IS clonazepam d4	50, 400	13%	10%	5%	9%	6%	7%
codeine 1	IS codiene d3	50, 400	8%	8%	3%	6%	6%	2%
desalkylflurazepam 1	IS desalkyflurazepam d4	50, 400	14%	14%	5%	7%	7%	3%
diazepam 1	IS diazepam d5	50, 400	8%	7%	4%	5%	5%	3%
dihydrocodeine 1	IS dihydrocodeine d6	50, 400	4%	3%	6%	4%	4%	3%
fentanyl 1	IS fentanyl d5	5, 40	6%	5%	3%	4%	4%	2%
flunitrazepam 1	IS flunitrazepam d7	5, 40	9%	8%	8%	5%	6%	6%
hydrocodone 1	IS hydrocodone d3	50, 400	8%	7%	3%	6%	7%	2%
hydromorphone 1	IS hydromorphone d3	5, 40	8%	5%	5%	3%	5%	5%
lorazepam 1	IS lorazepam d4	50, 400	15%	11%	8%	7%	8%	6%
methadone 1	IS methadone d3	50, 400	21%	17%	8%	17%	21%	6%
midazolam 1	IS midazolam d4	50, 400	6%	6%	2%	2%	4%	3%
morphine 1	IS morphine d3	50, 400	10%	10%	4%	9%	9%	3%
norbuprenorphine 1	IS norbuprenorphine d3	5, 40	8%	7%	3%	8%	6%	6%
nordiazepam 1	IS nordiazepam d5	50, 400	11%	10%	4%	3%	4%	3%
oxazepam 1	IS oxazepam d5	50, 400	11%	11%	6%	5%	4%	3%
oxycodone 1	IS oxycodone d3	50, 400	8%	5%	6%	6%	6%	6%
oxymorphone 1	IS oxymorphone d3	5, 40	9%	6%	8%	6%	6%	5%
ramelteon 1	IS alprazolam d5	5, 40	10%	7%	10%	4%	7%	9%
temazepam 1	IS temazepam d5	50, 400	9%	10%	6%	4%	7%	6%
zaleplon 1	IS zaleplon d4	50, 400	7%	5%	6%	4%	4%	4%
zolpidem 1	IS zolpidem d6	50, 400	2%	3%	2%	2%	2%	1%
zopiclone 1	IS zopiclone d4	50, 400	5%	3%	5%	4%	4%	4%


Conclusion

Several compounds demonstrated average suppression or enhancement greater than $\pm 25\%$ for either the analyte, internal standard or both. None of the compounds demonstrated average suppression or enhancement greater than $\pm 11\%$ for the relative response indicating that the use of isotopically-labeled internal standards compensated for any significant ion suppression or enhancement. Likewise the % CV demonstrated for the analyte and internal standard for methadone was greater than 15%, but the % CV for the relative response was not greater than 10% for any compound. The use of isotopically-labeled internal standards compensated for any significant ion suppression or enhancement.

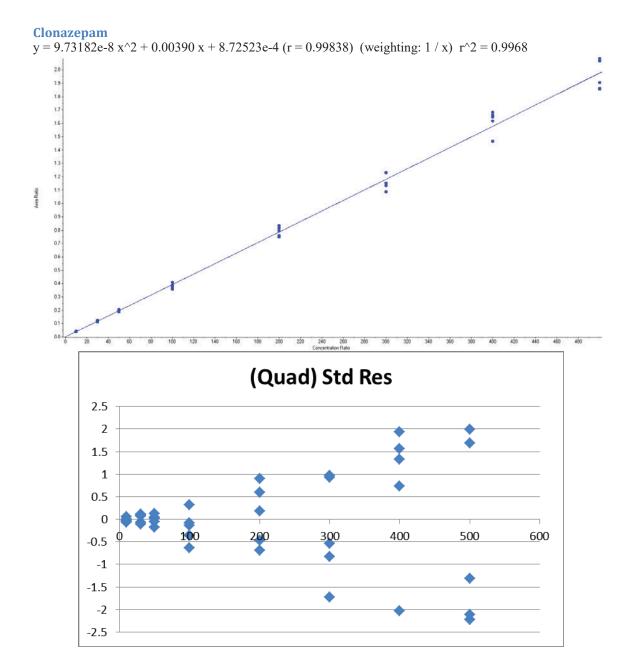
Calibration model/linearity

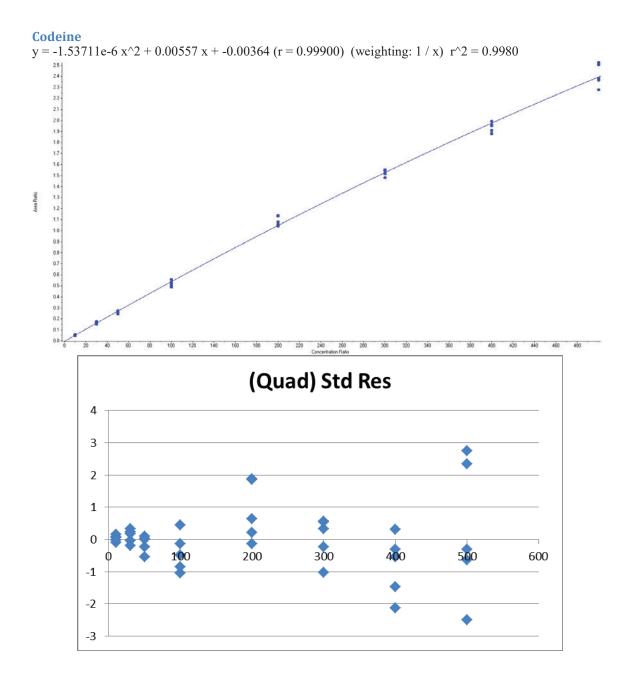

Calibrators at 11 concentrations from 0.1 to 100 ng/mL or 1 to 1000 ng/mL were prepared and extracted. The combined data of at least 6 non-zero concentrations evenly spaced across the calibration range with five replicates at each level analyzed in 5 separate extractions (one replicate per level per extraction) were used to establish the calibration model. The coefficient of determination (r^2) was ≥ 0.990 for all compounds except chlordiazepoxide. A more appropriate minimum coefficient of determination for chlordiazepoxide will be specified in the method as ≥ 0.980 . Visual inspection of the curves and residual

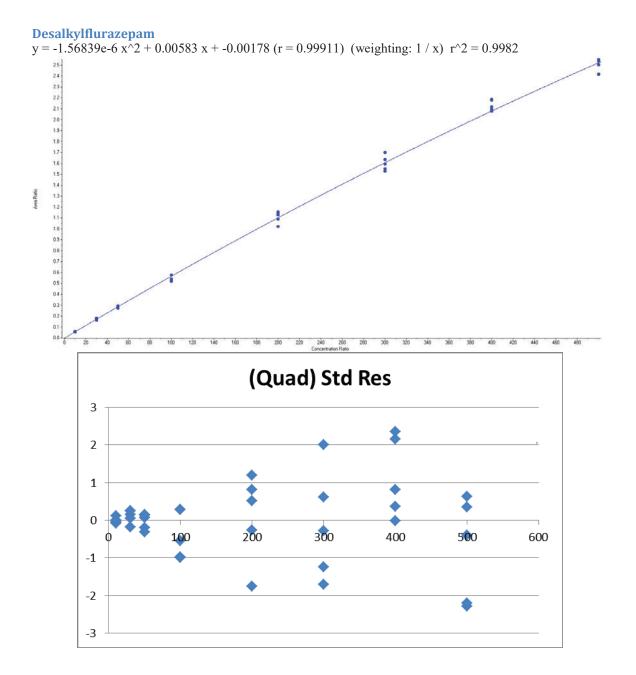

plots indicated normal random scatter around the calibration curve. All calibrators were within \pm 20% of their prepared concentration. Standardized residual plots for each compound validated for quantitative analysis were constructed. Any outliers (outside \pm 3 standard deviations) were eliminated prior to final analysis of the standardized residual plots. Std Res was used as an abbreviation for standardized residual plot.

Nick Tiscione 4/7/14 Page 12 of 59

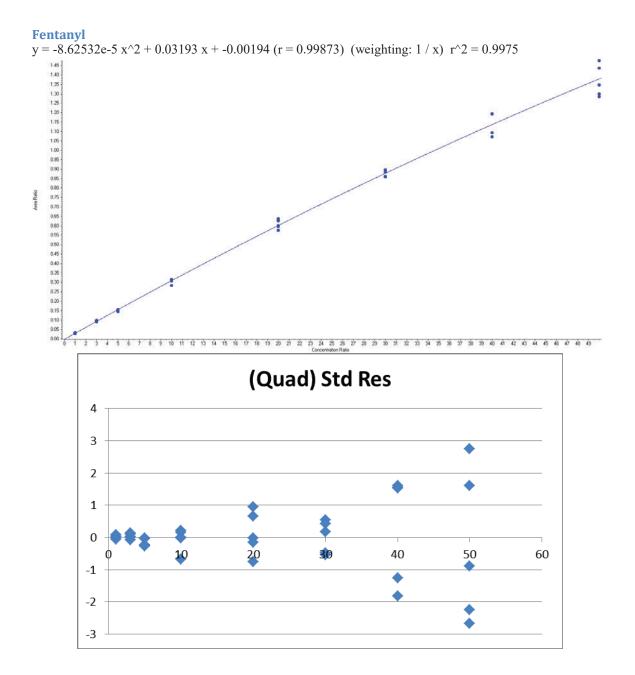

7-aminoflunitrazepam

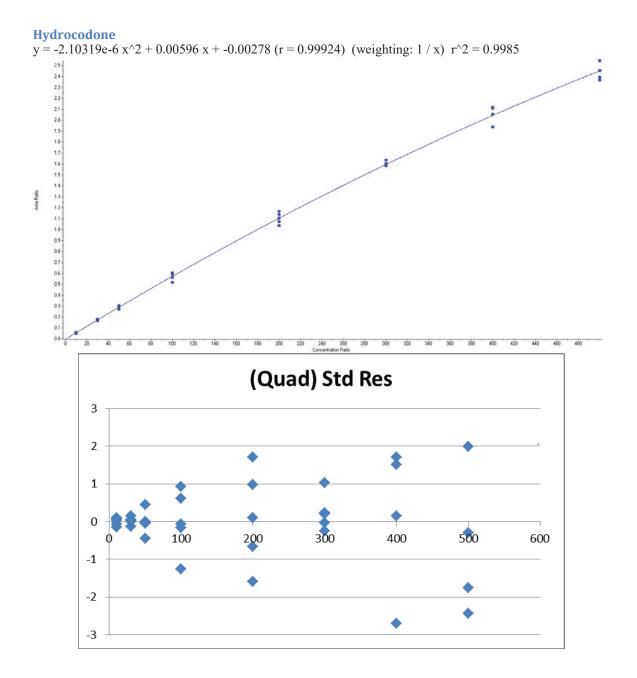


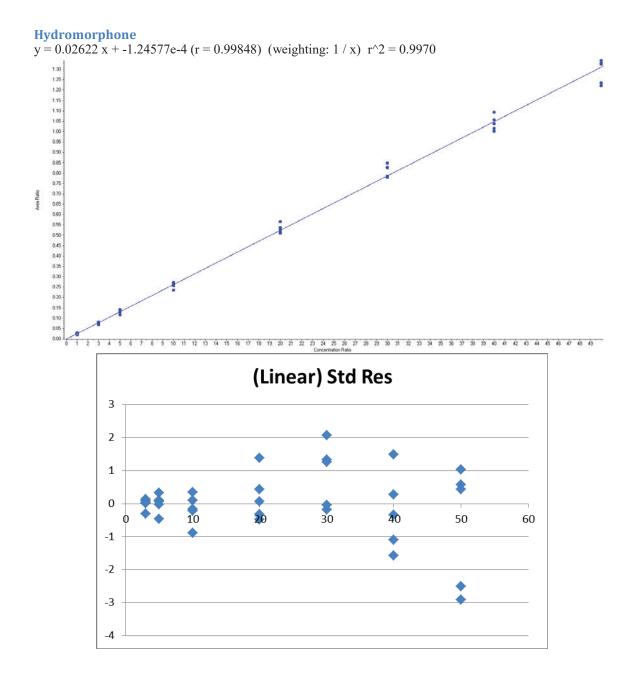

Nick Tiscione 4/7/14 Page 13 of 59

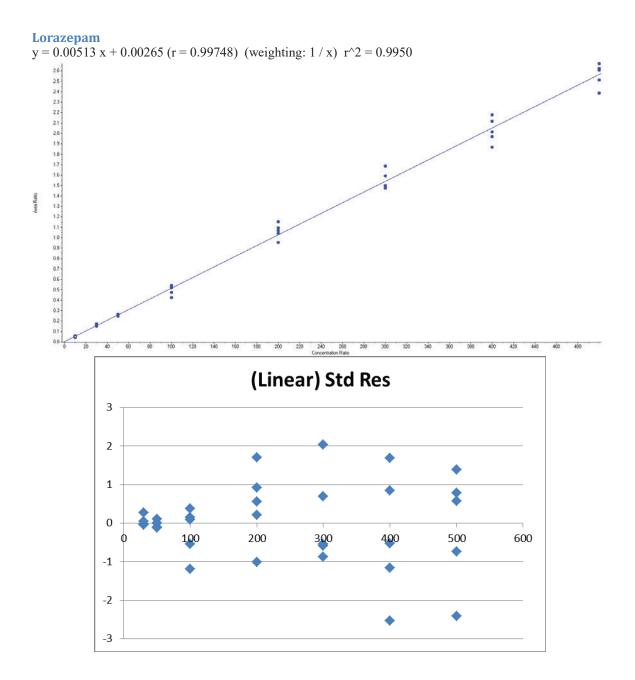


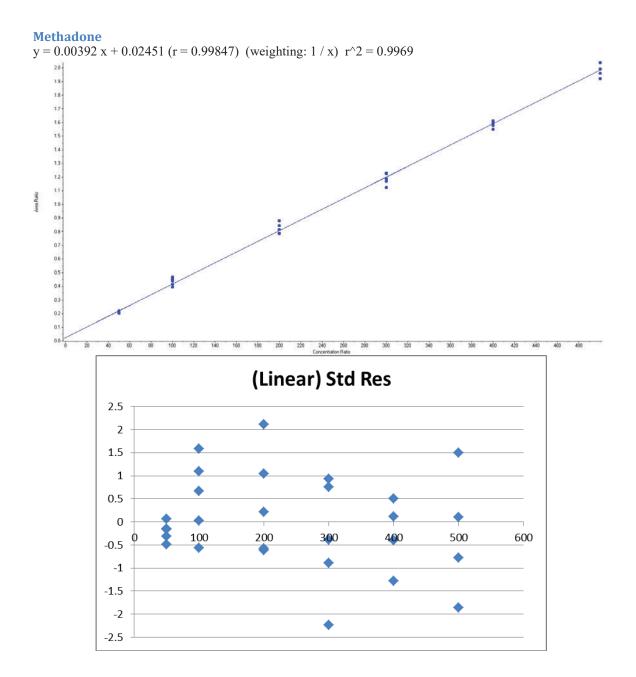

Nick Tiscione 4/7/14 Page 15 of 59

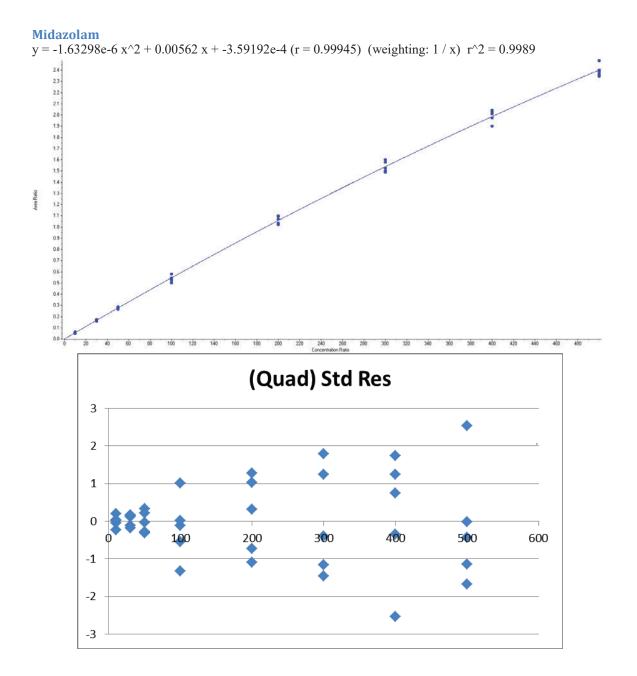


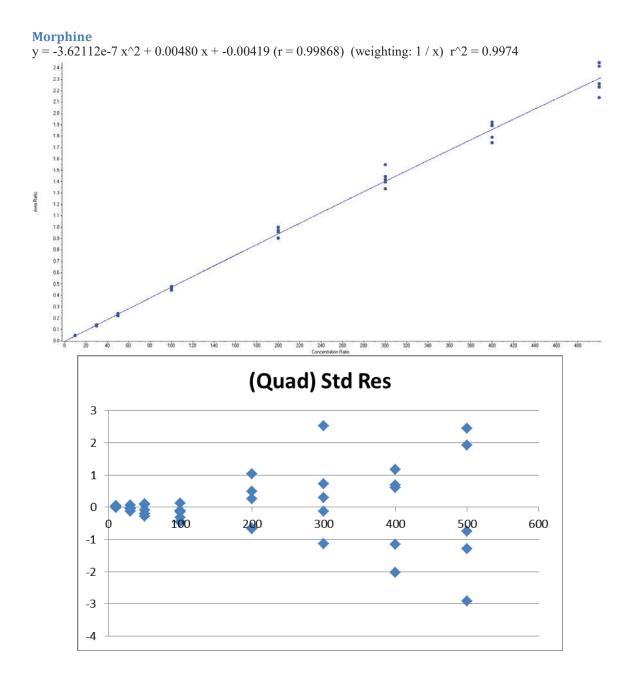


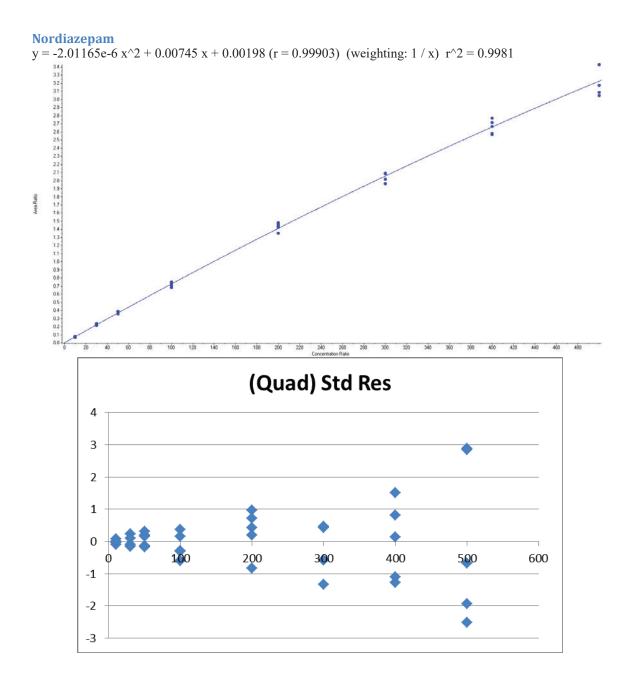


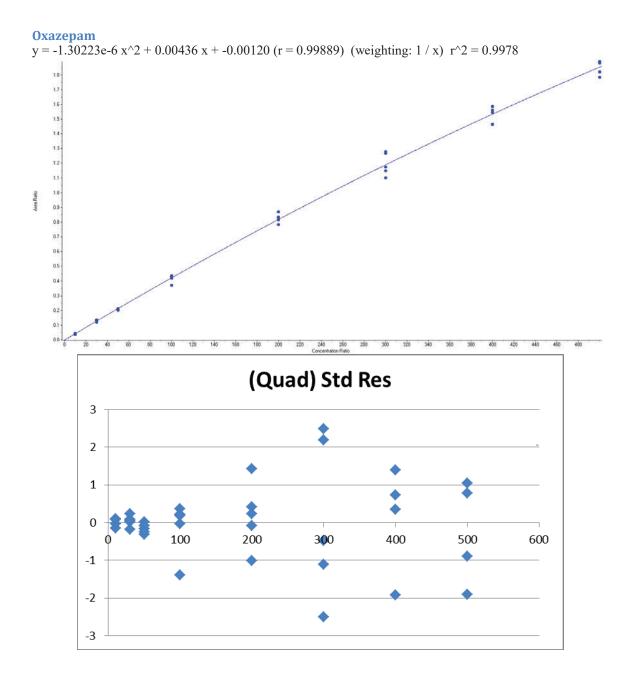

Nick Tiscione 4/7/14 Page 18 of 59

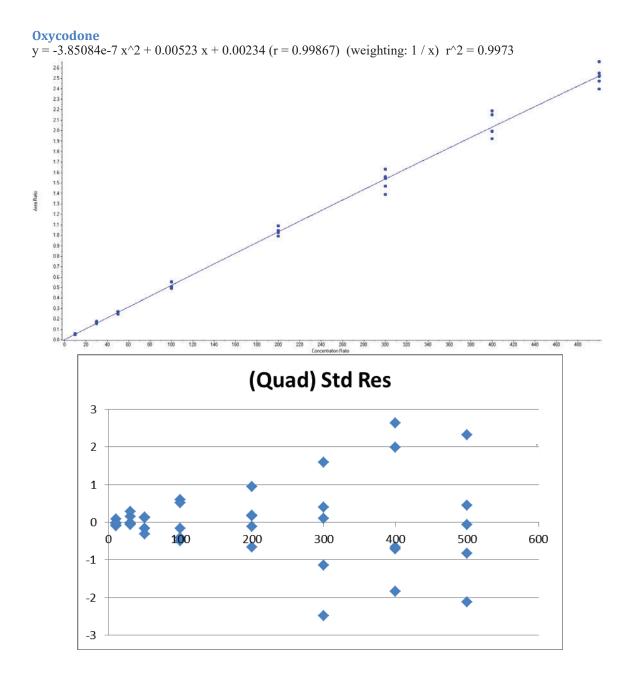


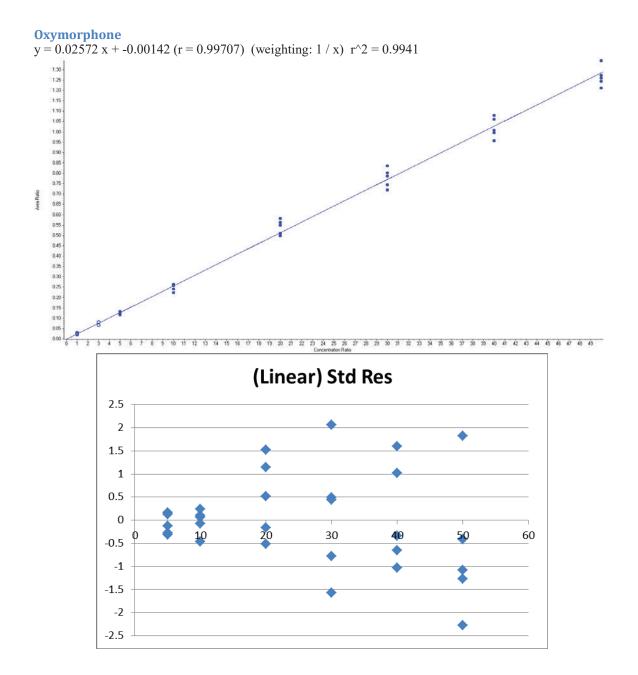


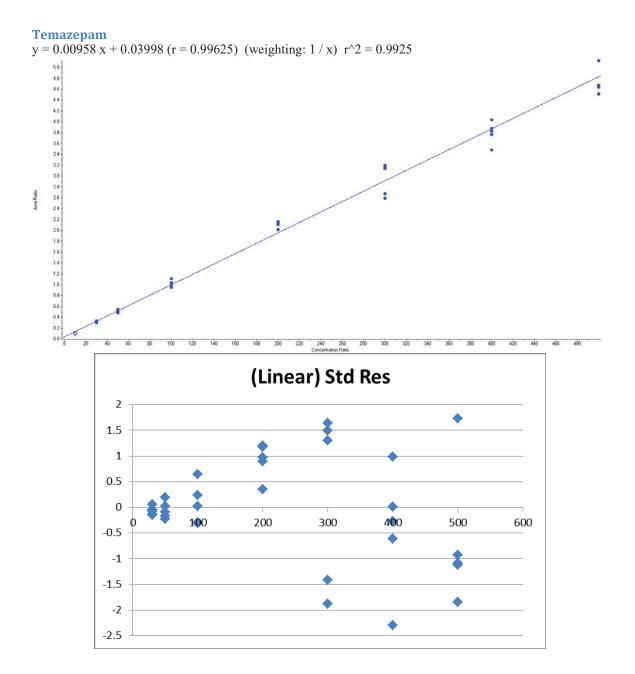


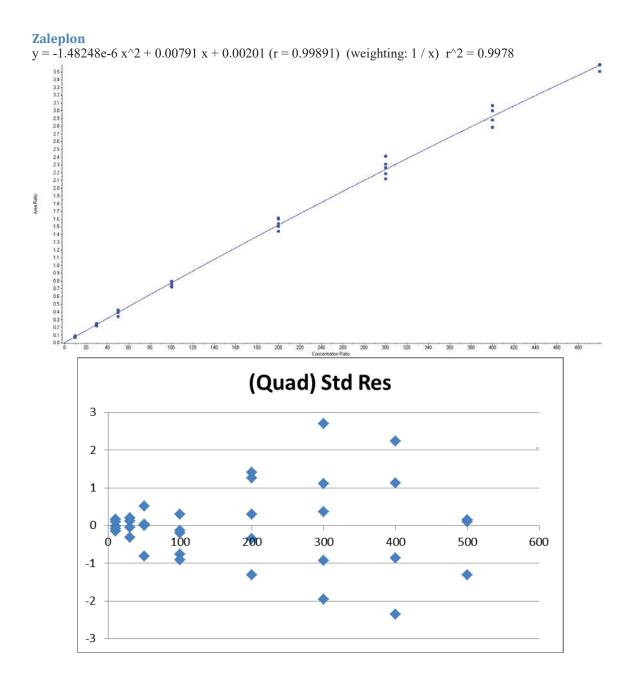


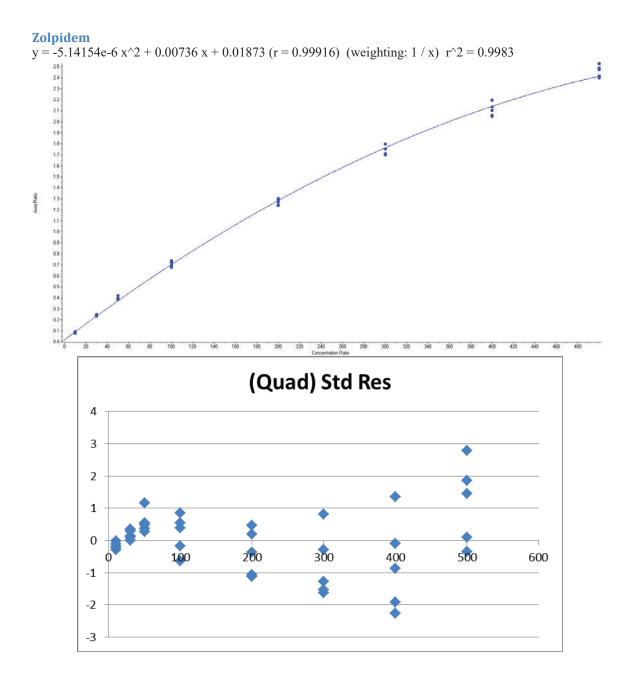


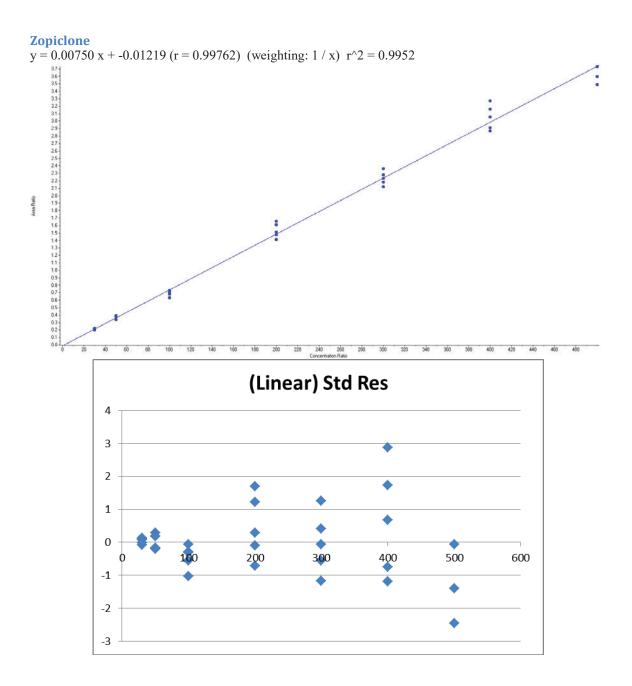

Nick Tiscione 4/7/14 Page 24 of 59










Nick Tiscione 4/7/14 Page 30 of 59

Nick Tiscione 4/7/14 Page 32 of 59

Conclusion

A suitable calibration model was determined for each compound that was validated for quantitative analysis and is summarized below.

Nick Tiscione 4/7/14 Page 34 of 59

Analyte	Range(ng/mL)	Curve Fit	Weighting
6-MAM	5-50	Linear	1/x
7-Aminoflunitrazepam	3-50	Linear	1/x
Alprazolam	10-500	Quadratic	1/x
Chlordiazepoxide	50-500	Linear	1/x
Clonazepam	10-500	Quadratic	1/x
Codeine	10-500	Quadratic	1/x
Desalkylflurazepam	10-500	Quadratic	1/x
Diazepam	10-500	Quadratic	1/x
Dihydrocodeine	Qualitative Only		
Fentanyl	1-50	Quadratic	1/x
Flunitrazepam	Qualitative Only		
Hydrocodone	10-500	Quadratic	1/x
Hydromorphone	3-50	Linear	1/x
Lorazepam	30-500	Linear	1/x
Methadone	50-500	Linear	1/x
Midazolam	10-500	Quadratic	1/x
Morphine	10-500	Quadratic	1/x
Norbuprenorphine	3-50	Linear	1/x
Nordiazepam	10-500	Quadratic	1/x
Oxazepam	10-500	Quadratic	1/x
Oxycodone	10-500	Quadratic	1/x
Oxymorphone	5-50	Linear	1/x
Temazepam	30-500	Linear	1/x
Zaleplon	10-500	Quadratic	1/x
Zolpidem	10-500	Quadratic	1/x
Zopiclone	30-500	Linear	1/x

Sensitivity - Limit of Detection (LOD)

The validated LOD was verified by at least two replicates of a standard run in five separate extractions prepared in whole blood containing a mixture of four different sources. All compounds had good chromatographic peak shape at the LOD. All signal-to-noise ratios were greater than 20:1. MRM ion ratios were within 20% and retention times were within 0.1 minutes compared to the average of all calibrators used (specific to each compound). An experimental LOD was determined by analyzing at least one replicate of a standard in five separate extractions prepared in whole blood containing a mixture of four different sources. Additional experiments may be performed to validate the determined experimental LOD.

Nick Tiscione 4/7/14 Page 36 of 59

Analyte	Experimental LOD (ng/mL)	Lowest Signal to Noise at Experimental LOD	Validated LOD (ng/mL)	Lowest Signal to Noise at Validated LOD	
6-MAM	5	205.6	5	205.6	
7-Aminoflunitrazepam	3	51.5	3	51.5	
Alprazolam	5	23.1	10	31.3	
Chlordiazepoxide	5	313.1	10	511.3	
Clonazepam	10	97.5	10	97.5	
Codeine	5	69.8	10	89.3	
Desalkylflurazepam	5	60.9	10	101.6	
Diazepam	5	291.1	10	432	
Dihydrocodeine	5	57.9	10	81.9	
Fentanyl	0.5	142.2	1	206.6	
Flunitrazepam	3	20.5	3	20.5	
Hydrocodone	1	43.4	10	127.4	
Hydromorphone	3	65.6	3	65.6	
Lorazepam	30	50.5	30	50.5	
Methadone	5	131.4	10	216.3	
Midazolam	1	79.8	10	299.4	
Morphine	5	143.6	10	213.2	
Nordiazepam	5	137.7	10	169.2	
Oxazepam	5	36	10	63.6	
Oxycodone	5	90	10	163.7	
Oxymorphone	5	50.9	5	50.9	
Temazepam	5	170.6	10	243.8	
Zaleplon	10	132.7	10	132.7	
Zolpidem	1	176.8	10	533.3	
Zopiclone	5	206.5	10	317.3	

Nick Tiscione 4/7/14 Page 37 of 59

The method demonstrated suitable LODs for the compounds validated.

Sensitivity-Limit of Quantitation (LOQ)

The LOQ was verified by two replicates of a standard run in five separate extractions prepared in a mixture of whole blood containing four different sources. All compounds had good chromatographic peak shape at the LOQ. All signal-to-noise ratios were greater than 31:1 for those compounds validated for quantitative analysis. MRM ion ratios were within 20% and retention times were within 0.1 minutes compared to the average of all calibrators used (specific to each compound). All quantitative results were within $\pm 20\%$ of their prepared concentration.

Analyte	Validated LOQ (ng/mL)	Lowest Signal to Noise at Validated LOQ		
6-MAM	5	205.6		
7-Aminoflunitrazepam	3	51.5		
Alprazolam	10	31.3		
Chlordiazepoxide	50	1100.7		
Clonazepam	10	97.5		
Codeine	10	89.3		
Desalkylflurazepam	10	101.6		
Diazepam	10	432		
Dihydrocodeine	N/A	0		
Fentanyl	1	206.6		
Flunitrazepam	N/A	0		
Hydrocodone	10	127.4		
Hydromorphone	3	65.6		
Lorazepam	30	50.5		
Methadone	50	336.1		
Midazolam	10	299.4		
Morphine	10	213.2		
Nordiazepam	10	169.2		
Oxazepam	10	63.6		
Oxycodone	10	163.7		
Oxymorphone	5	50.9		
Temazepam	30	467.1		
Zaleplon	10	132.7		
Zolpidem	10	533.3		
Zopiclone	30	609.8		

Nick Tiscione 4/7/14 Page 39 of 59

The method demonstrated suitable LOQs for those compounds validated for quantitative analysis. Dihydrocodeine and flunitrazepam were validated for qualitative identification only.

Repeatability-Bias (Accuracy)

Standards prepared at least at 3 different concentrations—low, medium, and high levels meeting validation requirements were evaluated for each compound. Three replicates from five separate extractions were evaluated for each level with the exception of the 1/10 ng/mL control which had two replicates from five separate extractions. The bias was within $\pm 20\%$ of the prepared concentration for all those compounds validated for quantitative analysis above their respective LOQs. The control levels evaluated for each compound are outlined below followed by the results of the bias evaluation.

Analyte	Control Levels	1:10 Dilution Control
6-MAM	5,20,40	200
7-Aminoflunitrazepam	3,5,20,40	200
Alprazolam	10,30,50,200,400	2000
Chlordiazepoxide	50,200,400	2000
Clonazepam	10,30,50,200,400	2000
Codeine	10,30,50,200,400	2000
Desalkylflurazepam	10,30,50,200,400	2000
Diazepam	10,30,50,200,400	2000
Dihydrocodeine	10,30,50,200,400	2000
Fentanyl	1,3,5,20,40	200
Flunitrazepam	3,5,20,40	200
Hydrocodone	10,30,50,200,400	2000
Hydromorphone	3,5,20,40	200
Lorazepam	30,50,200,400	2000
Methadone	50,200,400	2000
Midazolam	10,30,50,200,400	2000
Morphine	10,30,50,200,400	2000
Nordiazepam	10,30,50,200,400	2000
Oxazepam	10,30,50,200,400	2000
Oxycodone	10,30,50,200,400	2000
Oxymorphone	5,20,40	200
Temazepam	30,50,200,400	2000
Zaleplon	10,30,50,200,400	2000
Zolpidem	10,30,50,200,400	2000
Zopiclone	30,50,200,400	2000

					Bias (Ac	curacy)				
Analyte		1/10	ng/mL Cor	ntrol			3/30	ng/mL Cor	ntrol	
	Step 3	Step 4	Step 5	Step 6	Step 7	Step 3	Step 4	Step 5	Step 6	Step 7
6-MAM										
7-Aminoflunitrazepam						-3%	3%	7%	1%	3%
Alprazolam	4%	5%	9%	7%	6%	-1%	3%	4%	-3%	4%
Chlordiazepoxide										
Clonazepam	-2%	10%	-3%	-1%	4%	4%	6%	1%	-2%	-7%
Codeine	6%	1%	2%	4%	7%	4%	0%	7%	5%	-1%
Desalkylflurazepam	-1%	8%	4%	3%	-3%	-7%	0%	-2%	2%	9%
Diazepam	-1%	6%	7%	10%	-3%	3%	3%	4%	3%	-3%
Dihydrocodeine										
Fentanyl	0%	10%	5%	0%	0%	-6%	0%	1%	0%	-2%
Flunitrazepam										
Hydrocodone	4%	14%	16%	-5%	-2%	-3%	-1%	-2%	0%	-4%
Hydromorphone						3%	-8%	-3%	-4%	-3%
Lorazepam						-6%	-8%	9%	6%	4%
Methadone										
Midazolam	2%	11%	18%	2%	-4%	1%	4%	5%	-1%	2%
Morphine	9%	16%	8%	8%	-4%	3%	3%	1%	1%	-3%
Nordiazepam	-3%	6%	1%	6%	-3%	-1%	3%	0%	5%	-5%
Oxazepam	4%	4%	16%	15%	4%	8%	1%	3%	0%	0%
Oxycodone	4%	4%	0%	3%	-4%	1%	2%	2%	-4%	-1%
Oxymorphone										
Temazepam						-10%	-7%	-9%	-17%	-6%
Zaleplon	3%	11%	-19%	8%	-4%	-3%	-1%	-2%	-4%	5%
Zolpidem	-6%	6%	6%	6%	0%	8%	13%	9%	6%	5%
Zopiclone						-6%	6%	5%	8%	15%

					Bias (Ac	curacy)				
Analyte		5/50	ng/mL Cor	ntrol			20/20	0 ng/mL Co	ontrol	
	Step 3	Step 4	Step 5	Step 6	Step 7	Step 3	Step 4	Step 5	Step 6	Step 7
6-MAM	13%	6%	19%	14%	9%	2%	8%	8%	10%	10%
7-Aminoflunitrazepam	-5%	0%	3%	5%	3%	6%	4%	-3%	5%	7%
Alprazolam	-3%	-3%	4%	-4%	0%	2%	-2%	1%	-2%	2%
Chlordiazepoxide	-5%	-2%	-2%	8%	14%	11%	0%	2%	3%	3%
Clonazepam	2%	-6%	-5%	-4%	-7%	10%	-4%	0%	-4%	9%
Codeine	-1%	4%	0%	2%	1%	9%	5%	0%	4%	3%
Desalkylflurazepam	-5%	-2%	2%	0%	4%	2%	-1%	2%	3%	8%
Diazepam	-5%	0%	3%	0%	5%	2%	-4%	4%	-3%	4%
Dihydrocodeine										
Fentanyl	-6%	-6%	0%	-4%	-4%	0%	-10%	0%	-2%	0%
Flunitrazepam										
Hydrocodone	-6%	-3%	1%	-1%	-3%	-2%	-5%	1%	-3%	4%
Hydromorphone	-7%	-11%	3%	-7%	-2%	-2%	-6%	1%	-5%	5%
Lorazepam	1%	0%	8%	2%	-3%	5%	2%	4%	4%	1%
Methadone	12%	-4%	6%	7%	0%	11%	11%	4%	-1%	11%
Midazolam	0%	4%	4%	0%	8%	0%	-5%	0%	-1%	8%
Morphine	-3%	3%	1%	-3%	6%	2%	3%	-4%	1%	3%
Nordiazepam	-4%	-2%	2%	4%	0%	2%	-1%	5%	2%	4%
Oxazepam	2%	-6%	9%	-4%	2%	5%	-1%	-1%	-1%	6%
Oxycodone	1%	0%	5%	-1%	5%	1%	2%	-2%	1%	9%
Oxymorphone	-3%	10%	-4%	1%	0%	-2%	3%	0%	7%	6%
Temazepam	-7%	-2%	-1%	-14%	-3%	-1%	-3%	-1%	-9%	2%
Zaleplon	1%	3%	0%	-5%	3%	4%	1%	-3%	1%	9%
Zolpidem	8%	8%	9%	11%	8%	1%	-2%	-3%	1%	4%
Zopiclone	-2%	4%	-2%	-3%	11%	15%	8%	0%	-6%	-6%

					Bias (Ac	curacy)				
Analyte		40/40	0 ng/mL Co	ontrol		200/2000 ng/mL 1:10 Dilution Control				
	Step 3	Step 4	Step 5	Step 6	Step 7	Step 3	Step 4	Step 5	Step 6	Step 7
6-MAM	3%	7%	3%	12%	7%	10%	3%	2%	10%	3%
7-Aminoflunitrazepam	5%	3%	4%	0%	7%	3%	-6%	-13%	2%	-1%
Alprazolam	-2%	-1%	4%	-4%	4%	0%	-12%	-8%	-7%	0%
Chlordiazepoxide	5%	0%	5%	-2%	0%	6%	0%	-4%	0%	5%
Clonazepam	2%	5%	4%	3%	-3%	-1%	-10%	-6%	-6%	0%
Codeine	5%	1%	13%	3%	5%	2%	-3%	-11%	-1%	-10%
Desalkylflurazepam	3%	1%	8%	8%	4%	4%	-13%	-8%	-1%	0%
Diazepam	-1%	-1%	4%	-4%	6%	-4%	-12%	-12%	-6%	1%
Dihydrocodeine										
Fentanyl	-1%	2%	5%	-6%	-3%	-5%	-14%	-11%	-8%	-9%
Flunitrazepam										
Hydrocodone	-3%	0%	7%	-5%	-2%	-3%	-13%	-8%	-7%	-3%
Hydromorphone	-4%	-3%	3%	-5%	2%	-2%	-3%	-8%	-11%	-1%
Lorazepam	2%	5%	9%	3%	3%	7%	3%	-10%	-1%	5%
Methadone	4%	1%	10%	-1%	1%	-7%	-16%	-10%	-5%	-5%
Midazolam	-1%	0%	4%	-1%	1%	-3%	-6%	-11%	-5%	-1%
Morphine	1%	4%	8%	-1%	0%	3%	-7%	-1%	-5%	3%
Nordiazepam	9%	4%	6%	-5%	-7%	1%	-7%	-7%	-1%	-1%
Oxazepam	8%	7%	9%	-6%	9%	-5%	-4%	-6%	-5%	-1%
Oxycodone	-2%	-7%	7%	-2%	4%	3%	-7%	-8%	-10%	1%
Oxymorphone	-3%	-4%	12%	10%	5%	1%	-1%	-1%	-1%	2%
Temazepam	-7%	-8%	-1%	-5%	-6%	2%	-9%	-11%	-9%	-4%
Zaleplon	-2%	5%	2%	6%	1%	-4%	-6%	-10%	3%	6%
Zolpidem	1%	-1%	10%	1%	3%	-3%	-8%	-7%	-4%	0%
Zopiclone	12%	8%	3%	1%	-6%	11%	2%	-7%	-5%	-5%

The method demonstrated an acceptable bias of within \pm 20% for all those compounds validated for quantitative analysis.

Repeatability—Within-run and between-run precision

At least three levels were evaluated (the same standards that were used for the bias experiments). Three replicates from five separate extractions were evaluated for each level with the exception of the 1/10 ng/mL

control which had two replicates from five separate extractions. The CV was within 20% for all levels evaluated. See above for the control levels that were used for each compound.

				Wit	hin-Run Pr	ecision (%	CV)			
Analyte		1/10	ng/mL Cor	ntrol		3/30 ng/mL Control				
	Step 3	Step 4	Step 5	Step 6	Step 7	Step 3	Step 4	Step 5	Step 6	Step 7
6-MAM										
7-Aminoflunitrazepam						3%	3%	11%	2%	0%
Alprazolam	2%	8%	8%	2%	0%	5%	5%	8%	2%	3%
Chlordiazepoxide										
Clonazepam	1%	4%	12%	2%	3%	6%	2%	10%	9%	4%
Codeine	3%	6%	3%	2%	5%	4%	1%	5%	5%	4%
Desalkylflurazepam	1%	4%	0%	4%	4%	5%	4%	6%	4%	4%
Diazepam	4%	3%	5%	3%	1%	4%	2%	10%	1%	6%
Dihydrocodeine	4%	1%	0%	1%	3%	2%	4%	7%	6%	4%
Fentanyl	0%	0%	7%	0%	0%	5%	3%	4%	3%	4%
Flunitrazepam						10%	2%	15%	12%	13%
Hydrocodone	0%	2%	2%	4%	1%	3%	6%	3%	2%	2%
Hydromorphone						3%	6%	9%	2%	10%
Lorazepam						2%	3%	7%	2%	5%
Methadone										
Midazolam	1%	1%	3%	5%	10%	2%	2%	1%	1%	3%
Morphine	1%	4%	4%	7%	2%	3%	1%	3%	2%	2%
Nordiazepam	1%	1%	6%	4%	4%	5%	1%	9%	3%	9%
Oxazepam	3%	5%	5%	5%	6%	7%	4%	11%	4%	8%
Oxycodone	6%	12%	3%	5%	16%	2%	0%	5%	6%	5%
Oxymorphone										
Temazepam						6%	5%	5%	3%	3%
Zaleplon	17%	1%	1%	1%	1%	4%	6%	6%	6%	12%
Zolpidem	3%	7%	3%	1%	1%	1%	1%	2%	1%	3%
Zopiclone		, 				3%	2%	10%	6%	1%

Within-run Precision

				Wit	hin-Run Pr	ecision (%	CV)			
Analyte		5/50	ng/mL Cor	ntrol		20/200 ng/mL Control				
	Step 3	Step 4	Step 5	Step 6	Step 7	Step 3	Step 4	Step 5	Step 6	Step 7
6-MAM	1%	3%	1%	2%	8%	3%	1%	8%	2%	1%
7-Aminoflunitrazepam	3%	4%	1%	1%	1%	1%	7%	3%	2%	4%
Alprazolam	4%	1%	5%	4%	2%	7%	8%	1%	2%	3%
Chlordiazepoxide	2%	2%	3%	4%	3%	4%	5%	4%	1%	5%
Clonazepam	1%	5%	3%	5%	5%	5%	7%	6%	2%	3%
Codeine	4%	4%	6%	4%	2%	1%	6%	1%	0%	11%
Desalkylflurazepam	7%	4%	2%	1%	9%	3%	5%	5%	3%	1%
Diazepam	3%	2%	8%	2%	4%	1%	9%	3%	3%	4%
Dihydrocodeine	1%	5%	1%	5%	2%	1%	6%	3%	3%	2%
Fentanyl	0%	2%	5%	2%	2%	2%	8%	1%	3%	2%
Flunitrazepam	8%	13%	11%	7%	3%	2%	4%	3%	3%	6%
Hydrocodone	3%	5%	2%	4%	0%	3%	6%	7%	1%	5%
Hydromorphone	4%	6%	3%	1%	4%	2%	3%	5%	9%	3%
Lorazepam	2%	5%	5%	6%	1%	3%	1%	8%	4%	4%
Methadone	7%	2%	7%	2%	7%	4%	4%	1%	2%	4%
Midazolam	3%	3%	2%	1%	1%	2%	3%	3%	1%	2%
Morphine	2%	1%	3%	4%	2%	3%	8%	5%	2%	4%
Nordiazepam	5%	4%	4%	2%	4%	4%	6%	5%	5%	8%
Oxazepam	6%	4%	2%	5%	5%	4%	10%	3%	5%	5%
Oxycodone	3%	6%	12%	7%	6%	3%	3%	5%	5%	5%
Oxymorphone	4%	6%	6%	5%	2%	1%	5%	9%	8%	2%
Temazepam	3%	4%	4%	1%	4%	6%	6%	4%	6%	5%
Zaleplon	3%	2%	2%	9%	2%	2%	7%	1%	3%	3%
Zolpidem	1%	1%	6%	2%	5%	1%	6%	2%	4%	5%
Zopiclone	8%	5%	3%	5%	9%	2%	6%	5%	3%	2%

				Wit	hin-Run Pr	ecision (%	CV)				
Analyte		40/40	0 ng/mL Co	ontrol		200	200/2000 ng/mL 1:10 Dilution Control				
	Step 3	Step 4	Step 5	Step 6	Step 7	Step 3	Step 4	Step 5	Step 6	Step 7	
6-MAM	3%	6%	6%	5%	6%	5%	3%	3%	2%	7%	
7-Aminoflunitrazepam	0%	1%	3%	4%	2%	7%	4%	2%	3%	2%	
Alprazolam	6%	2%	3%	8%	4%	8%	9%	7%	5%	5%	
Chlordiazepoxide	2%	3%	4%	4%	2%	5%	2%	5%	3%	1%	
Clonazepam	3%	11%	8%	6%	9%	6%	9%	5%	9%	6%	
Codeine	6%	2%	4%	5%	7%	5%	6%	2%	2%	3%	
Desalkylflurazepam	4%	8%	3%	4%	3%	8%	4%	0%	6%	3%	
Diazepam	2%	8%	1%	6%	1%	4%	5%	2%	3%	4%	
Dihydrocodeine	2%	6%	3%	1%	2%	2%	5%	3%	3%	2%	
Fentanyl	4%	3%	2%	4%	1%	5%	3%	1%	3%	3%	
Flunitrazepam	9%	7%	6%	3%	8%	4%	1%	3%	6%	1%	
Hydrocodone	1%	3%	3%	7%	5%	4%	3%	2%	1%	3%	
Hydromorphone	4%	3%	4%	4%	3%	2%	3%	1%	5%	4%	
Lorazepam	6%	13%	5%	4%	6%	2%	7%	2%	5%	5%	
Methadone	6%	2%	5%	4%	2%	7%	6%	8%	5%	4%	
Midazolam	1%	3%	3%	3%	1%	7%	2%	3%	2%	4%	
Morphine	1%	5%	1%	4%	2%	9%	2%	3%	5%	4%	
Nordiazepam	4%	8%	1%	6%	6%	4%	3%	1%	4%	7%	
Oxazepam	7%	4%	8%	3%	6%	3%	9%	4%	1%	5%	
Oxycodone	4%	3%	4%	5%	7%	4%	5%	4%	1%	7%	
Oxymorphone	3%	6%	6%	4%	4%	8%	2%	3%	6%	3%	
Temazepam	4%	4%	3%	4%	10%	6%	4%	2%	8%	9%	
Zaleplon	2%	2%	6%	4%	7%	10%	3%	4%	3%	3%	
Zolpidem	2%	4%	2%	5%	2%	7%	3%	4%	1%	4%	
Zopiclone	1%	3%	3%	2%	2%	9%	4%	2%	2%	5%	

Between-run Precision

Between-run Precisio		Betw	/een-Run P	Precision (%	%CV)	
Analyte	1/10 ng/mL (n = 10)	3/30 ng/mL (n = 15)	5/50 ng/mL (n = 15)	20/200 ng/mL (n = 15)	40/400 ng/mL (n = 15)	200/2000 ng/mL (n = 15)
6-MAM			5%	5%	6%	5%
7-Aminoflunitrazepam		6%	4%	5%	3%	7%
Alprazolam	4%	5%	4%	5%	5%	8%
Chlordiazepoxide			8%	5%	4%	5%
Clonazepam	7%	7%	5%	7%	7%	7%
Codeine	4%	5%	4%	6%	6%	7%
Desalkylflurazepam	4%	7%	6%	4%	5%	8%
Diazepam	6%	5%	5%	5%	5%	7%
Dihydrocodeine	4%	5%	4%	3%	4%	6%
Fentanyl	5%	4%	3%	5%	5%	4%
Flunitrazepam		16%	10%	4%	7%	6%
Hydrocodone	8%	3%	4%	5%	6%	5%
Hydromorphone		7%	6%	6%	5%	5%
Lorazepam		8%	5%	4%	7%	7%
Methadone			8%	5%	5%	7%
Midazolam	8%	3%	4%	5%	3%	5%
Morphine	7%	3%	4%	5%	4%	6%
Nordiazepam	5%	6%	5%	5%	8%	5%
Oxazepam	7%	7%	7%	6%	8%	5%
Oxycodone	8%	4%	7%	5%	6%	7%
Oxymorphone			7%	6%	8%	4%
Temazepam		6%	6%	6%	5%	7%
Zaleplon	12%	7%	5%	5%	5%	8%
Zolpidem	6%	3%	3%	4%	5%	5%
Zopiclone	r	8%	8%	9%	6%	9%

The method demonstrated acceptable within-run and between-run precision with all CVs within 20%.

Reportable range

The reportable range was determined after evaluating the calibration model and sensitivity of the assay. The reportable range was determined to at least encompass the concentrations outlined belowbut may extend beyond the ranges evaluated in this validation. Compounds meeting acceptable identification criteria with apparent concentrations outside of the range identified below may be reported. With the validated dilution factor of 1:10 the upper end of the reportable range may be extended to ten times the number reported below.

Analyte	Reportable Range (ng/mL)
6-MAM	5-100
7-Aminoflunitrazepam	3-100
Alprazolam	5-1000
Chlordiazepoxide	5-1000
Clonazepam	10-1000
Codeine	5-1000
Desalkylflurazepam	5-1000
Diazepam	5-1000
Dihydrocodeine	5-1000
Fentanyl	0.5-100
Flunitrazepam	3-100
Hydrocodone	1-1000
Hydromorphone	3-100
Lorazepam	30-1000
Methadone	5-1000
Midazolam	1-1000
Morphine	5-1000
Nordiazepam	5-1000
Oxazepam	5-1000
Oxycodone	5-1000
Oxymorphone	5-100
Temazepam	5-1000
Zaleplon	10-1000
Zolpidem	1-1000
Zopiclone	5-1000

Nick Tiscione 4/7/14 Page 50 of 59

The reportable range determined in validation is appropriate for the compounds included in this method.

Dilution Integrity

Dilution integrity was evaluated for a 1:10 dilution of a 200/2000 ng/mL control prepared in whole blood. All stated bias and precision criteria were acceptable using the dilution. The results are included with the bias and precision data above.

Conclusion

All compounds validated for quantitative analysis demonstrated acceptable bias and precision using a 1:10 dilution. A 1:10 dilution may be used in routine casework for those samples with concentrations that may be above the highest calibrator.

Carryover

The lack of carryover was determined by triplicate analyses on five different days. A blank matrix sample was analyte free when run after a standard prepared at 100/1000 ng/mL.

Conclusion

The method demonstrated a lack of carryover up to a concentration of 100/1000 ng/mL. Matrix or solvent blanks will be run prior to each case sample to demonstrate that carryover did not occur.

Extract Stability

Five replicates of controls were prepared at a low, medium, and high concentration. The extracts were combined and then divided into five different vials. A vial of each level was injected in triplicate on day 0. The other vials were stored on the instrument and re-injected on each subsequent day in triplicate. The response of each analyte, internal standard, or relative response must be within \pm 20% of the response from day 0. If the response falls outside this range then the extract stability of the analyte was exceeded. Extract stability varied from 0 to 4 days depending on the drug.

Nick Tiscione 4/7/14 Page 51 of 59

Analyte	Extract Stability (# of days after day of extraction)
6-MAM	0
7-Aminoflunitrazepam	0
Alprazolam	4
Chlordiazepoxide	0
Clonazepam	0
Codeine	4
Desalkylflurazepam	0
Diazepam	0
Dihydrocodeine	4
Fentanyl	4
Flunitrazepam	4
Hydrocodone	3
Hydromorphone	1
Lorazepam	0
Methadone	4
Midazolam	0
Morphine	4
Nordiazepam	0
Oxazepam	0
Oxycodone	0
Oxymorphone	0
Temazepam	0
Zaleplon	4
Zolpidem	0
Zopiclone	4

Nick Tiscione 4/7/14 Page 52 of 59

The extract stability of many drugs was exceeded on day 1. It is recommended that extracts not be rerun in excess of 24 hours after extraction unless the rerun is for a drug that demonstrated suitable extract stability. For routine analysis the batch may be run twice, back to back, due to the limited stability of many drugs in the extract.

Ruggedness/Robustness

Validation studies were performed by 5 different analysts over multiple days and demonstrated repeatable results. Some studies had to be repeated for some drugs and are summarized below.

Step (Data file)	Issue	Analyte	Resolution
			It was determined that the preparation of the dilution
			stock needed to be modified by adding a pulse vortex
			step to ensure sufficient mixing of the spike into whole
			blood. Data was used from an extraction performed on a
3 (Replicates01)	1:10 dilution low for all analytes	All	different day for all 3 replicates.
			Data was used from an extraction performed on a
	1:10 dilution quant value low for		different day (Repeat2/Replicates05b) for all three
4 (Replicates02)	one replicate of hydromorphone	hydromorphone	hydromorphone 1:10 dilution control replicates.
			Data was used from an extraction performed on a
			different day (Repeat2/Replicates05b) for all
4 (Replicates02)	r ² of oxymorphone curve < 0.99	oxymorphone	oxymorphone standards.
			Data was used from an extraction performed on a
	10ng/mL CON-1 for alprazolam		different day (Repeat/Replicates05a) for both of the two
4 (Replicates02)	above 120%	alprazolam	alprazolam 10ng/mL CONS.
			Data was used from an extraction performed on a
	10ng/mL CON-2 for codeine at		different day (Repeat/Replicates05a) for both of the two
5 (Replicates03)	12.3 ng/mL	codeine	codeine 10ng/mL CONS.
			Data was used from an extraction performed on a
	10ng/mL CON-2 for zaleplon		different day (Repeat/Replicates05a) for both of the two
5 (Replicates03)	above 120%	zaleplon	zaleplon 10ng/mL CONS.
			Data was used from an extraction performed on a
	5ng/mL CON-2 for oxymorphone		different day (Repeat/Replicates05a) for all three
6 (Replicates04)	MRM outside +/-20%	oxymorphone	oxymorphone 5ng/mL CONS.
			Data was used from an extraction performed on a
	10ng/mL CON-2 for oxycodone		different day (Repeat3/Replicates05c) for both of the two
6 (Replicates04)	above 120%	oxycodone	oxycodone 10ng/mL CONS.
			Data was used from an extraction performed on a
	400ng/mL CON-2 for zaleplon		different day (Repeat/Replicates05a) for all of the
6 (Replicates04)	above 120%	zaleplon	zaleplon 400ng/mL CONS.
			Data was used from an extraction performed on a
	1:10 dilution quant value low for		different day (Repeat2/Replicates05b) for all three
7 (Replicates05)	one replicate of lorazepam	lorazepam	lorazepam 1:10 dilution control replicates.

Conclusion

Overall the method demonstrated acceptable robustness and yielded repeatable results.

Case Sample Comparison

Thirty case samples and three College of American Pathologists (CAP) proficiency samples that had been previously analyzed were reanalyzed by the method for a case comparison/crossover study. Five of the case samples and one CAP proficiency were negative for the target analytes by the original methods and the BEN/OPI/Z Quant by LCMSMS method. There were only two drugs that could not be confirmed by LC-MSMS that were identified in the original analysis. Both of these samples, however were in storage for approximately a year between the original analysis and the LC-MSMS analysis. The drugs, diazepam and lorazepam, may have limited stability in blood specimens for such long periods of storage. The LOD for lorazepam is also slightly lower (5 ng/mL) for the original method compared to the LC-MSMS method (10 ng/mL). There were several compounds that were not able to be identified in the original analysis, but were determined to be present by LC-MSMS as a result of better sensitivity by the LC-MSMS method. In particular it was noted that several samples contained fentanyl that was not originally identified by screening with the blood base procedure. An ELISA screen for fentanyl will be evaluated to achieve more robust screening for blood samples for fentanyl. Any compounds that showed better sensitivity, etc. by either the original method or LC-MSMS method are highlighted in green in the table below. Overall there was good agreement of the qualitative results between the original methods and the LC-MSMS method, within the capabilities of each specific method.

There was very good agreement of the quantitative results (within $\pm 20\%$) for the majority of compounds in the majority of samples. There were seven results that exceeded –20%. They are highlighted in red in the table below. Three of those results were for nordiazepam and oxazepam in cases in which chlordiazepoxide was also present (and Chlordiazepoxide is metabolized to norchlordiazepoxide and demoxepam and then further to nordiazepam and oxazepam. Therefore, all four compounds may be present in blood specimens after consumption of chlordiazepoxide. Demoxepam and to a lesser extent, norchlordiazepoxide, when present in high concentrations can result in falsely elevated levels of nordiazepam and oxazepam when measured by GC/MS due to breakdown of demoxepam and norchlordiazepoxide in the high temperature GC inlet as described by Joyce, et. al (7). The same effect is not observed when analysis by LC-MSMS is performed, as there is no high temperature zone prior to the mass spectrometer. These observations were confirmed based on experiments performed during this validation with GC/MS and LC-MSMS in which the positive control was analyzed both with and without the addition of 1 µg/mL of chlordiazepoxide, norchlordiazepoxide, and demoxepam. With the GC/MS analysis significantly elevated levels of nordiazepam were observed for the control containing demoxepam (88%). Significantly elevated levels of oxazepam were also observed by GC/MS for the control containing norchlordiazepoxide (21%) and demoxepam (212%). The positive control containing chlordiazepoxide, norchlordiazepoxide, and demoxepam also demonstrated a significant elevation of nordiazepam (456%) and oxazepam (46%) concentrations. When the controls were reinjected, all demonstrated the return of nordiazepam to expected levels and even greater elevation of oxazepam, indicating that if the extract remains on the autosampler for a longer period of time before injection, only the oxazepam levels will be elevated. Conversely if the extract is injected shortly after the extraction is complete elevated levels for both nordiazepam and oxazepam may be observed. Other case samples () that did not contain chlordiazepoxide demonstrated good agreement of quantitative results for nordiazepam and oxazepam within 14%.

One case (**Containing**) containing hydromorphone demonstrated quantitative results 23.6% lower than the original analysis (6.8 compared to 8.9 ng/mL), but the sample was in storage for greater than one year between the original analysis and the LC-MSMS analysis and may have experienced some degradation of the drug over that time. Insufficient specimen volume

remained to re-extract the sample to examine this possibility. Another case sample (**Containing**) containing hydromorphone in which the original analysis and LC-MSMS analysis occurred within 1 day of each other demonstrated quantitative results for the LC-MSMS method within 3% of the original method.

One case (**Construction**) containing zolpidem demonstrated quantitative results 21.4% lower than the original analysis (570 compared to 725 ng/mL). This was however within the calculated uncertainty of measurement of the original analysis of +/- 22%. Both results were obtained with a dilution of the blood specimen (5x for the original analysis and 10x for the LC-MSMS analysis). This may have contributed to the overall difference in the quantitative results. Another case sample (**Constanting**) containing zolpidem had comparable quantitative results within 3% of the original analysis.

One case (**1999**) containing alprazolam demonstrated results 32.8% lower than the original analysis using the blood benzodiazepine quantitation method (43 compared to 64 ng/mL). The case was in storage for almost a year, so to rule out drug degradation over that period of time it was re-extracted using the blood alprazolam quantitation method with a 5x dilution and the results of 70 ng/mL were comparable to the original analysis. The sample was exhausted to complete this evaluation and therefore no further testing could be conducted to ascertain the reason for the lower quantitative results by LC-MSMS. Thirteen other blood cases containing alprazolam all had comparable quantitative results within +/- 20% of the original analysis.

One CAP proficiency sample (14CAP-03) containing lorazepam demonstrated results 27.3% lower than the original analysis (125 compared to 172 ng/mL). The sample was re-extracted by both the original method and the LC-MSMS method and demonstrated similar results of 170 and 127 ng/mL, respectively. The reason for the difference in quantitative results was not able to be ascertained and will be further examined when CAP releases the acceptable results for this sample. One case sample **(100)** containing lorazepam had comparable quantitative results within 5% of the original analysis.

All of the results of the case comparison/crossover study are presented in the table below.

Nick Tiscione 4/7/14 Page 55 of 59

	Original Analysis			LC-MSMS Analysis			~	
Case #	Drug	Concentration	n Date of Date	Concentration	Date of	%	Comments	
		(ng/mL)	Analysis	Drug	(ng/mL)	Analysis	Difference	
	Zopiclone		8/21/2012	Zopiclone	215	3/31/2014		
	Citalopram			Not target				
	CE	< 50	3/4/2013	Not target				
	BE	280	3/4/2013	Not target				
				Alprazolam	< 10	3/31/2014		Below 50ng/mL LOD of Blood Benzo
	Midazolam	67	3/4/2013	Midazolam	76	3/31/2014	13.43%	
	Hydromorphone	8.9	3/13/2013	Hydromorphone	6.8	3/31/2014	-23.60%	Greater than 1 year in storage
	ND		2/25/2013	ND		2/20/2014		
								10x dilution on 2/28/14 LC-MSMS
	Diazepam	< 20	3/19/2013	Diazepam	ND	2/20/2014		ND 2/28/14 LC-MSMS
	Nordiazepam	539	3/19/2013	Nordiazepam	497	2/20/2014	-7.79%	380 2/28/14 LC-MSMS
	Oxazepam	240	3/19/2013	Oxazepam	< 10	2/20/2014		ND 2/28/14 LC-MSMS
	Clonazepam	< 20	3/19/2013	Clonazepam	17	2/20/2014		< 100 2/28/14 LC-MSMS
	Chlordiazepoxide		3/21/2013	Chlordiazepoxide	> 500	2/20/2014		1160 2/28/14 LC-MSMS
	Oxycodone	110	3/20/2013	Oxycodone	112	2/20/2014	1.82%	< 100 2/28/14 LC-MSMS
				Oxymorphone	< 5	2/20/2014		<< Oxymorphone, OPI-OX not reported
				Codeine	< 10	2/20/2014		OPI-OX LOD = 10
								Chlordiazepoxide metabolites
								break down in GC Inlet - can
								elevate Nordiazepam,
								Oxazepam levels
	Citalopram		3/21/2013	Not target				
	Zolpidem	267	3/21/2013	Zolpidem	273	2/20/2014	2.25%	250 on 3/24/14 LC-MSMS (10x)
	Cocaine	< 50	5/23/2013	Not target				
	CE	< 50	5/23/2013	Not target				
	BE	600	5/23/2013	Not target				
	Alprazolam	64	5/23/2013	Alprazolam	43	3/21/2014	-32.81%	3/24/14 ALP LLE (5x) = 70
	THC	3.6	5/3/2013	Not target				
	THCA	9.2	5/3/2013	Not target				

	Original Analysis			LC-MSMS Analysis			%	
Case #	Drug	Concentration		Drug	Concentration	Date of	Difference	Comments
		(ng/mL)	Analysis		(ng/mL)	Analysis		
	Alprazolam	30		Alprazolam	34	2/25/2014		32 on 3/13/14 LC-MSMS
	Hydromorphone	8.2		Hydromorphone	8.0	2/25/2014		9.0 on 3/13/14 LC-MSMS
	Zolpidem	725	2/26/2014		570	3/13/2014	-21.38%	UOM = +/- 22% for Blood Base
	Chlordiazepoxide			Chlordiazepoxide	1060	2/25/2014		730 on 3/13/14 LC-MSMS
	Nordiazepam	92		Nordiazepam	64	2/25/2014	-30.43%	59 on 3/13/14 LC-MSMS
	Oxazepam	146		Oxazepam	< 10	2/25/2014		< 10 on 3/13/14 LC-MSMS
	Clonazepam	< 20	9/11/2013	Clonazepam	10			11 on 3/13/14 LC-MSMS Chlordiazepoxide metabolite
								break down in GC Inlet - can
								elevate Nordiazepam.
								Oxazepam levels
	Carisoprodol	8300	0/19/2012	Not target				Oxazepannevers
	Meprobamate	23000		Not target				
	Clonazepam	54	÷	Clonazepam	46	2/25/2014	-14 81%	44 on 3/13/14 LC-MSMS
	Hydrocodone	<10		Hydrocodone	<10	2/25/2014	-14.01/0	< 10 on 3/13/14 LC-MSMS
	Cocaine	< 50	11/21/2013			-,,		
	CE	< 50	11/21/2013					
	BE	> 1000	11/21/2013					
	Alprazolam	16		Alprazolam	19	2/13/2014	18.75%	16 on 2/28/14 LC-MSMS
	Hydrocodone	<10		Hydrocodone	< 10	2/13/2014		< 10 on 2/28/14 LC-MSMS
	ND		3/7/2013					
				Alprazolam	8.5	3/21/2014		Below 50ng/mL LOD of Blood Benzo
	Clonazepam	62	3/14/2013	Clonazepam	57	3/21/2014	-8.06%	
	THCA	4.4	3/20/2013	Not target				
	Lorazepam	< 20	5/2/2013	ND				Below 10ng/mL LOD of LC-MSN
	Alprazolam	55	2/27/2014	Alprazolam	57	2/25/2014	3.64%	49 on 3/13/14 LC-MSMS
	Alprazolam	93	8/29/2013	Alprazolam	80	2/13/2014	-13.98%	92 on 2/28/14 LC-MSMS
	BE	70	8/28/2013	Not target				
	Alprazolam	35	9/26/2013	Alprazolam	39	2/13/2014	11.43%	43 on 2/28/14 LC-MSMS
	Diazepam	20	9/11/2013	Diazepam	18	2/13/2014	-10.00%	18 on 2/28/14 LC-MSMS
	Nordiazepam	30	9/11/2013	Nordiazepam	26	2/13/2014	-13.33%	26 on 2/28/14 LC-MSMS
	THC	< 2.5	9/12/2013	Not target				
	THCA	75	9/12/2013	Not target				
	THC	< 2.5	11/21/2013	Not target				
	THCA	32	11/21/2013					
	Diazepam	107	11/25/2013		102	2/13/2014		101 on 2/28/14 LC-MSMS
	Nordiazepam	316		Nordiazepam	305	2/13/2014	-3.48%	279 on 2/28/14 LC-MSMS
	Oxazepam	< 20	11/25/2013		12	2/13/2014		11 on 2/28/14 LC-MSMS
				Temazepam	< 30	2/13/2014		Below 25ng/mL LOD of Blood Benzo
	Alprazolam	168		Alprazolam	171	2/13/2014		
	Morphine	38	11/25/2013		39	2/13/2014	2.63%	39 on 2/28/14 LC-MSMS
	Amitriptyline	196	12/11/2013					
	Nortriptyline		12/11/2013					
	Cocaine BE	88 3275	11/18/2013 11/18/2013		+			
					40	2/12/2014	4 3001	
	Lorazepam Oxycodone	47 <10		Lorazepam Oxycodone	49 < 10	2/13/2014 2/13/2014	4.26%	
			1				6 5001	
	Alprazolam Benzoylecgonine	91 63		Alprazolam Not target	97	3/31/2014	6.59%	
	THCA	< 2.5		Not target	+			
		~ 2.3	1/ 14/ 2014	Hydrocodone	< 10	3/31/2014		ELISA OPI/OXY Negative
	Alprazolam	7.1	1/14/2014	Alprazolam	< 10	2/20/2014		< 10 on 3/24/14 LC-MSMS
	Clonazepam	29		Clonazepam	29	2/20/2014		28 on 3/24/14 LC-MSMS
	Fentanyl	6.3	3/13/2014		6.3	2/20/2014		20 011 3/ 24/ 14 LC-IVISIVIS ND in blood base screen 5.7 on 3/24/14 LC-N
	. chungi	0.5	5/ 25/ 2014	Morphine	<10	2/20/2014	0.00/0	NU IN DIOOD Dase screen 5.7 on 3/24/14 UC-N ELISA OPI Post two, OPI-OX TMS Neg. 10 on 3/24/14 UC
	ND		1/7/2014		. 10	2/25/2014		ND on 3/13/14 LC-MSMS
	Alprazolam	66		Alprazolam	57	2/20/2014	-13 64%	71 on 3/24/14 LC-MSMS
	THC	3.1		Not target	5/	2/20/2014	-13.0470	7 2 0/1 3/ 24/ 14 LO-19(3)9(3
	THCA	40		Not target	+			
	Clonazepam	< 20		Clonazepam	19	3/31/2014		
	Pentobarbital	×20		Not target	19	3/ 31/ 2014		
	6-MAM	3.5	3/26/2014		<5	3/27/2014		
	Morphine	79		Morphine	89	3/27/2014	12.66%	
	morphille	15	3/20/2014	morphille	05	3/2//2014	12.00%	

Nick Tiscione 4/7/14 Page 57 of 59

	Original Analysis			LC-MSMS Analysis			0/	
Case #	Drug	Concentration	Date of	Drug	Concentration	Date of	% Difference	Comments
		(ng/mL)	Analysis		(ng/mL)	Analysis		
	BEN/OPI/Z ND		3/6/2014	ND		3/31/2014	Ļ	
	THC	6.1	3/7/2014	Not target				
	THCA	74	3/10/2014	Not target				
	Alprazolam	41	3/10/2014	Alprazolam	38	3/20/2014	-7.32%	
	Morphine	< 10	3/26/2014	Morphine	10	3/20/2014	ļ	
	BE	90	3/11/2014	Not target				
	Fentanyl	5.0	4/10/2014	Fentanyl	4.0	3/20/2014	-20.00%	ND in blood base screen
	Alprazolam	190	4/1/2014	Alprazolam	154	4/1/2014	-18.95%	
	Oxycodone	126	3/26/2014	Oxycodone	120	4/1/2014	-4.76%	
	Oxymorphone	2.5	3/26/2014	Oxymorphone	< 5	4/1/2014	ļ	
				Morphine	< 10	4/1/2014	ļ	<< Morphine not reported OPI-OX
				Nordiazepam	< 10	4/1/2014	ļ	<< Nordiazepam not reported BBEN
	Cocaine	104	3/20/2014	Not target			1	
	BE	> 1000	3/20/2014	Not target			1	
	Alprazolam	28	3/21/2014	Alprazolam	25	4/1/2014	-10.71%	
	THC	< 2.5	3/25/2014	Not target				
	THCA	8.3	3/25/2014	Not target				
	Clonazepam	46	1/30/2014	Clonazepam	39	2/28/2014	-15.22%	
	Morphine	85	2/26/2014	Morphine	93	2/28/2014	9.41%	
	Alprazolam	77	3/10/2014	Alprazolam	73	4/1/2014	-5.19%	
	THCA	< 2.5	3/10/2014	Not target				
	Lorazepam	172	3/21/2014	Lorazepam	125	3/21/2014	-27.33%	LC-MSMS on 4/1/14 = 127
14CAP-03	Meperidine	4580	3/27/2014	Not target				
	Normeperidine	4040	3/27/2014	Not target				
14-FTCA-1	BEN/OPI/Z ND			ND		3/24/2014	ļ	
	Cocaine	373	3/20/2014	Not target			1	
	BE	3206	3/21/2014	Not target				
	ТНС	30	3/28/2014	Not target				
	THCA	43	3/28/2014	Not target				
	Codeine	262	3/26/2014	Codeine	245	3/24/2014	-6.49%	
14-FTCA-2	Chlorpheniramine	161	4/2/2014	Not target				

Overall the method demonstrated good agreement for both qualitative and quantitative results when compared to methods currently in use for casework. Increased sensitivity and detection was demonstrated for several compounds, especially fentanyl.

Uncertainty of Measurement

An estimation of the uncertainty of measurement was determined for each compound that was validated for quantitative analysis according to the currently approved procedure within the toxicology unit. At least thirty replicates of the 20/200 ng/mL control performed by 5 different analysts were used in the estimation. See the uncertainty worksheets maintained on the network or PBSO portal for the results.

References

- 1. Peters, F.T., Drummer, O.H., Musshoff, F. (2007) Validation of new methods. *Forensic Science International*, **165**, 216-224.
- 2. (2012) Journal of Analytical Toxicology Instructions to Authors. <u>http://www.oxfordjournals.org/our_journals/jat/for_authors/</u> (accessed 13 September 2012).

- 3. (2006) The Forensic Toxicology Laboratory Guidelines—2006 Version. Society of Forensic Toxicologists/American Academy of Forensic Sciences. <u>http://soft-tox.org/files/Guidelines 2006 Final.pdf</u> (accessed 25 March 2008).
- 4. Matuszewski, B.K., Constanzer, M.L., Chavez-Eng, C.M. (2003) Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC–MS/MS. *Analytical Chemistry*, **75**, 3019-3030.
- 5. Scientific Working Group for Forensic Toxicology (SWGTOX) Standard Practices for Method Validation in Forensic Toxicology. <u>http://www.swgtox.org/documents/Validation3.pdf</u> (accessed 29 November 2013).
- 6. Florida Department of Law Enforcement Toxicology Standard Operating Procedure. Version TOXSOP12. Issued: March 1, 2012.
- 7. Joyce, J.R., Bal, T.S., Ardrey, R.E., Stevens, H.M., Moffat, A.C. (1984) The decomposition of benzodiazepines during analysis by capillary gas chromatography/mass spectrometry. *Biomedical Mass Spectrometry*, **11**, 284-289.

Date:____4/7/14_____

Chemistry / Toxicology Manager

Nick Tiscione 4/7/14 Page 59 of 59